

Capacitance

- Capacitance is the property of an electrical circuit that opposes a change in voltage.
- When a voltage applied across a circuit is increased or decreased, capacitance resists that change.

Construction of a Capacitor

- A basic capacitor consists of **2 conducting** metallic plates separated by a layer of air or other insulating material such as glass, mica or even oil.
- The insulating material is called the Dielectric.

Axial Lead Capacitor

Electrolytic Capacitor

Radial Lead Capacitor

Ceramic Disc Capacitor

Variable Capacitor

Trimmer Capacitors

MICA DIELECTRIC

A similar capacitor at Marconi's station in Clifden, Ireland. Note the size of the two men!

Capacitor Symbols

Capacitors in a DC Circuit

Capacitors in a DC Circuit

- When **first connected** to a battery, **electrons flow** from the **negative battery terminal** to the **capacitor plate** and remain there because the dielectric prevents them from travelling to the opposite plate.
- Electrons on the opposite plate are attracted to the positive battery terminal.
- Eventually, the capacitor reaches the **same voltage** as the battery, and **no more electrons flow.**
- The capacitor is then said to be Charged.
- Capacitors block the flow of DC.

Capacitors in an AC Circuit

- Current cannot pass through a capacitor but Alternating Current appears to.
- If the voltage across the plates of the capacitor is continuously varied, the number of electrons varies.
- As the voltage changes then, it appears as though a current is flowing even though electrons do not actually traverse the dielectric.

Capacitors in an AC Circuit

Water Reservoir Analogy

Electrons

- Individual electrons are too small to have an effect in everyday electronics, so we use a larger number of them to make practical measurements.
- The Coulomb is equal to 6.3 x 10¹⁸ electrons (6,300,000,000,000,000,000 electrons).
- For example, one Ampere = 1 Coulomb per Second.

The Farad

- The unit of measure for capacitance is the Farad.
- One **Farad** is the **capacitance** in which a charge of **1 Coulomb** produces a **difference of 1 Volt** between the plates.
- One **Farad** is **much too large** a value for practical circuits however.

Practical Capacitor Units

- Practical capacitors are measured in:
 - Microfarads, or millionths of a Farad. They are abbreviated as μf , and equal to 1×10^{-6} Farads. The old abbreviation was mfd.
 - Picofarads, or millionth millionths of Farads, are equal to 1×10^{-12} Farads. They are abbreviated as pf. They were originally called Micromicrofarads, and you may still encounter the abbreviation mmf.

Factors Affecting Capacitance

- Plate Area: The larger the plate area, the greater the capacitance.
- Distance Between the Plates: The closer together the plates, the greater the capacitance. Of course, it is necessary to prevent the charge from jumping the gap (arcing).
- Changing the Dielectric: Greater capacitance can be obtained by using a dielectric other than air. Glass, mica, oil and mylar are some of the materials that have a greater Dielectric Constant than air. This is because they permit the plates to be closer together, and because they have electrons that can move slightly.

Dielectric Materials

Relative Dielectric Constants of Common Capacitor Dielectric Materials

Material	Dielectric Constant (k)	(O)rganic or (I)norganic
Vacuum	1 (by definition)	(-)
Air	1.0006	I I
	6.5 - 8.7	l I
Ruby mica		I I
Glass (flint)	10	1
Barium titanate (class I)	5 - 450	į.
Barium titanate (class II)	200 - 12000	, i
Kraft paper	≈ 2.6	0
Mineral Oil	≈ 2. <u>2</u> 3	Ō
Castor Oil	≈ 4.7	Ō
Halowax	≈ 5.2	0
Chlorinated diphenyl	≈ 5.3	0
Polyisobutylene	≈ 2.2	0
Polytetrafluoroethylene	≈ 2.1	О
Polyethylene terephthalate	≈ 3	0
Polystyrene	≈ 2.6	0
Polycarbonate	≈ 3.1	0
Aluminum oxide	≈ 8.4	1
Tantalum pentoxide	≈ 28	1
Niobium oxide	≈ 40	1
Titanium dioxide	≈ 80	I

(Adapted from: Charles A. Harper, Handbook of Components for Electronics, p 8-7.)

Capacitors in Parallel

- Capacitors in Parallel add their values.
- This is because it is equivalent to a single capacitor with a greater surface area.

Example of Capacitors in Parallel

$$C_T = C1 + C2 + C3$$

$$C_T = 75\mu f + 50\mu f + 75\mu f$$

$$C_T = 200 \mu f$$

Capacitors in Series

• Capacitors in Series must be treated the same way that resistors and inductors in parallel are treated.

C1 C2 C3
$$C_T = \frac{1}{\frac{1}{C1} + \frac{1}{C2} + \frac{1}{C3}}$$

Example of Capacitors in Series

Working Voltage

- All capacitors have a **characteristic working voltage**, sometimes called the **voltage rating**.
- It is the **maximum DC voltage** that the capacitor can **sustain continuously** without **excessive leakage** or **breaking down** ie: having the charge jump from one plate to the other (arc).
- Arcing will destroy most capacitors. Electrolytics can self-heal after small arcs. Even air-gap variable capacitors can be damaged by arcing.

Surge Voltage

- Surge voltage is the maximum voltage that can be withstood for a few seconds after the start-up of a circuit.
- It was an important parameter for **tube circuits**, but is **not very relevant** for modern solid-state circuits.

Reactance

- Reactance is the opposition to the flow of Alternating Current (AC).
- Reactance has no effect on the flow of Direct Current (DC).

Capacitive Reactance

- Capacitive Reactance is the opposition to the flow of AC by capacitance.
- As the frequency of the AC increases, Capacitive Reactance decreases.
- The **Symbol** for **Capacitive Reactance** is X_C .
- **X**_C is expressed in **ohms**.
- Even though it is expressed in ohms, power is not dissipated by Reactance! Energy stored in a capacitor during one part of the AC cycle is simply returned to the circuit during the next part of the cycle!

Capacitive Reactance

Energy Storage and Release

Capacitive Reactance

$$X_{C} = \frac{1}{2 \pi f C}$$

• Where:

F = frequency in Hertz

C = capacitance in Farads

 $\pi = 3.14$

Capacitive Reactance

$$X_{C} = \frac{1}{2 \pi f C}$$

However, Farads and Hertz are cumbersome units, so we can use other units:

F = frequency in Megahertz (MHz)

C = capacitance in Microfarads (µf)

$$\pi = 3.14$$

Capacitive Reactance Example 1

- What is the capacitive reactance of a 470 pf capacitor at a frequency of 7.15 MHz?
 - Remember that 470 pf = $0.000470 \mu f$.

$$X_{C} = \frac{1}{2 \pi f C}$$

$$= \frac{1}{2 \pi \times 7.15 \text{ MHz} \times 0.000470 \mu F}$$

$$= \frac{1 \Omega}{0.0211} = 47.4 \Omega$$

Capacitive Reactance Example 2

- What is the capacitive reactance of that same 470 pf capacitor at a frequency of 14.29 MHz?
 - Again, remember that 470 pf = $0.000470 \mu f$.

$$X_{C} = \frac{1}{2 \pi f C}$$

$$= \frac{1}{2 \pi \times 14.30 \text{ MHz} \times 0.000470 \mu F}$$

$$= \frac{1 \Omega}{0.0422} = 23.7 \Omega$$

Capacitive Reactance Examples

Note that as the frequency increased from 7.15
 MHz to 14.290 MHz, the Capacitive
 Reactance decreased from 47.4 ohms to 23.7
 ohms.

• Remember:

- Capacitors block DC;
- Capacitors store energy as an electrical charge; and
- As the frequency increases, capacitive reactance decreases (and vice versa!).

Current and Voltage

Inductive Reactance

$$X_{L}=\varpi L$$

(units in ohms = \square

Capacitive Reactance

$$X_C = \frac{1}{\omega C}$$

(units in ohms = \square)

Impedance

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
 (units in ohms = Ω)
Phase Angle
$$\phi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right)$$

Ohm's Law for A.C. Circuits

$$ZI = A$$